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Abstract— A perturbation technique is used to study the effects of in-plane inertia. rotary inertia,
and shear deformation on the nonlinear free vibration response of an imperfect, in-plane loaded
orthotropic plate. The von Karman type governing equilibrium equations of the plate correspond
to those of a recently proposed shear deformation theory which employs parabolic shear strain
variation across the thickness. The perturbation parameter is taken as the thickness to side length
ratio of the plate. By expressing the gencralized displacements in the form of a truncated power
series of the perturbation parameter, the five governing equatious of the problem under consideration
are reduced to a single second order ordinary differential cquation in terms of the transverse
displacement. The solution of this cquation is obtained by the method of multiple scales. Numerical
results illustrate the influence of various parameters under consideration,

INTRODUCTION

A very large part of the theoretical investigation carricd out on the vibration of plates
subjected to in-plane loading is limited to lincar small deformation theory as discussed by
Bert (1982) and Leissa (1981). The inclusion of geometric nonlincaritics while analysing
the response of in-plane loaded plates is essential due to the presence of in-plane loading.
Free vibration of plates with in-planc loading are of two types.

In the first type the free vibration characteristics of the plate in the presence of in-plane
load is carried out. In this case the in-plane load may be constant or it may be periodically
varying in time in which case the parametric vibrations are to be considered. A short history
of this class of problem and the related references may be found in the papers by Pasic and
Herrmann (1983, 1984).

The influence of in-plane loading, initial imperfections, in-plane inertia, and the geo-
metric nonlinearitics (taken individually) on the dynamic response of structures has been
considered extensively by Bolotin (1964). For the first time, Pasic and Herrmann (1984)
gave a general formulation for the free vibration analysis of plates treating all the parameters
simultancously. The important finding of Pasic and Herrmann (1984) was that the influence
of in-plane inertia is considerable in nonslender plates when they are parametrically excited
and may be neglected when the plate is subjected to a time independent in-plane load of
constant magnitude.

Another more oftenly neglected aspect in the analysis of in-plane loaded plates is the
influence of deformability of the loaded edges. By finding the exact solutions to the in-plane
equilibrium equations, so as to satisfy the applicd load exactly, Pasic and Herrmann (1983)
investigated the effect of loaded edge deformability on the buckling and vibration of plates.
They concluded that, for square (or ncarly square) plates, the edge deformations are to be
considered while they may be neglected for long rectangular plates.

In the second type of plate problems with in-plane load, the influence of initial buckle
due to in-plane preload on the subscquent vibration characteristics is of interest. Thus in
this case the buckled position duc to the application of in-plane preloading is found by
performing the static analysis. Then the small amplitude vibrations arc imposed on the
initially buckled plate in the form of a buckled mode. Hui (1985) and Hui and Leissa (1983)
have considered this problem using a single mode analysis for homogencous and laminated
plates.
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Fig. I. Coordinate system and dimensions of the plate.

The multimode analysis using the Ritz method is given by llanko and Dickinson
(1987a) for isotropic plates. Also. Hanko and Dickinson (1987b) have carried out very
useful experimental investigations on isotropic plates subjected to in-plane preload.

In all the above investigations the classical thin plate theory has been the basis for
governing equilibrium equations. [t is needless to stress the importance of inclusion of shear
deformation effects in the analysis of thick and even thin orthotropic plates. Bhimaraddi
(1987b. 1989) has given a single mode solution to both types of problems using the recently
proposed shear deformation theory due to Bhimaraddi (1987a) but the effects of in-planc
inertia and the shear rotary inertia were neglected.

It is difticult to take into account these etfects when one performs a straightforward
analysis such as those given by Ambartsumian et al. (1966), Bhimaraddi (1987b). Howcver,
as shown by Pasic and Herrmann (1984) a regular perturbation solution to the problem
renders possible the inclusion of inplanc and rotary inertia effects. In this paper the problem
of an imperfect orthotropic plate with in-plane loading has been considered using the
perturbation technique. Also, the effects of shear deformation, rotary inertia, and in-plane
inertia have been taken into account,

ANALYSIS FOR IN-PLANE RESPONSE OF PLATE

The middle surface strains tncorporating large deformations in the sense of von Kar-
man are given as (refer to Fig. 1)

cu LfowY cw [ iwy
o= =4+ - — ] +1{ = e
oo 2\ 0k dx )\ Cx
e lfdw '+ Ow\ [ Cw,
£ o= —+ -{ — S -
Tody 2\ dy dyJ\ Oy
‘(v ow\f dwy, ow\ [ Cw, ow\ { Cw
Pt vl aliewii ol B wutl § Wl ln ofl Wi-vodll | Merusnll i oll el I Wi (1)
Yy Cx ¢X oy cy cX “X cy

where u, r are the in-plane displacements in the x and p directions: w is the lateral
displacement measured from the initially imperfect position () of the plate. We introduce
the following dimensionless quantities for convenience.

Sd=hla; X =xja: ¥ =y/a, U=uja, V=uvia; W=wla: W, =w,/da:
=L pl—viv)it=ctd/JRasn: = EJJE iy =Gl —viva)/ By
v =G L=y W) E iy = Ga(l=vv)[E i NP =n¥/Ko* . NY=nrKs';
L=antintl K=Eh/(1—vivy): Esvy =B ir = ath. (2)

In the above &, a, b arc the thickness, length, and width of plate : ¢ is the time coordinate .
E,. E, are the Young's moduli in the x and y direction; v, and v, are the Poisson’s ratios
G- is the in-plane shear modulus: G, .. G, are the transverse shear moduli: n¥. nf are the
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applied in-plane loads in the x and y direction; p is the mass density of the material. The
in-plane membrane forces are given as (Bhimaraddi, 1987a, b, 1989)

Ne=n/K=U+iW?46W Wo+v.(V + W +6W Wy)

Ny =n,/K = vy(U+1W 330 Wo) 40 (V + W0+ 0W W)

Ny =n,/K=n(U+V+W W W W+ oW Wy). (3
Here ( )’ = d/¢Xand ( )" = ¢/¢Y. In the present shear deformation theory, five generalized

displacement parameters have been employed to describe the displacement components at
a given point (x, v,z). They are of the form

d=u+Ep—zow/dx. ¢ =v+EY —z0w/v: w =w; = z(1 —42°/3h%) 4)

where &, ¢, w are the displacements in the x, y, - directions at any point (x,y.2); ¢,y are
the shear rotations in addition to the familiar flexural rotations dw/dx and dw/dy. Detailed
discussion regarding the selection of the above displacement forms (4) and the derivation
of equilibrium equations and the associated boundary conditions can be found in a paper
by Bhimaraddi (1987a). Obviously there are five equilibrium equations : two corresponding
to « and v; two corresponding to ¢ and ¥ : and onc corresponding to w displacement
parameter. Equilibrium equations governing the in-planc motion are written as

U'tnp U+ (v )V = =W W —(vp+n )W W™
W WS W WW) = Sus (W Wyt W W)

)

=MW W WW W Wik W)+ U
(Vatn DU+ VoV = =y W W~ (vatn ) W W
—na W W =0 (W W+ W W) =3v (W Wi+ W WY)

-
-

— NS (W Wk W W Wt W W+ 5 V. (5)

In the above, superposed dots indicate the differentiation with respect to 1. For an alround
simply supported plate the boundary conditions are given as
U=W=W' =0 atX=0; W=W"'=0 atX=1
V=W=W'=0 atY=0;, W=W"=0 atY=1/r

1jr
’J N dY=8N* atXx=1; J N, dX =8Ny atY=I/r. (6)
0 0
Since the displacements U and ¥V are one order higher than the displacement W the
following perturbation series due to Pasic and Herrmann (1984) are used.
U=62U|+64U2+', V=(52V|+(S4Vl+, W=(SW|+' (7)

Substituting the series (7) into eqns (5) and equating the like powers of § one obtains the
following system of equations
Ut+n Ui+ (va+m)Vi= = W\W —(va+n )W WY
=W W = (WIWo+ WIW3) = v (W Wy + W W)
=W\ Wot+ W WY+ WIWo+ W)
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s (WW s+ W) =W 4 W5
= (WIW o+ W W+ WO WL+ W W) (%)

Us+n U+ (a4 )V Y= 0
(et DU+ V40 = L1 )]

The boundary conditions (6) become

Uy=W,=W;=U,=0 atX=0: W, =H7=0 at X =1
Vi=W,=W{=V,=0 at¥=0: W, =W,=0 at¥=1r  (10)

tr for
rf NadY = N¥,; J. N.d¥V=0 at X=1
] a

{ ¥
f N, dX = NF: J N,ydX =0 at ¥=1/r (1)
% i

in which V. N, cte. are given by

Noy= Ui+ WP+ WiW v, (K + W3+ WL W)

Noo= vy (U4 AW+ W WY+ (Vi + L+ W W)
Noa=nAU\+Vi+ W W, + WiW,L,+ W W) (12)
Nao=Us+v,Vii No=vUs+n Vi No=noaUs+ V). (13)

The simply supported boundary conditions are satisfied by using the transverse dis-
placement of the form

W, = f{z) sin zX sin nrY {14}

and the initial imperfections are assumed to be of the type
W, = f, sin nX sin nrY. (15)

Substituting eqns (14) and (15} into (8) and using the boundary conditions (10) and (1 1)
we obtain the following expressions for U, and V.

U, = (S +2ffo)(asin2rX +a,sin 2nXcos 2nr Y+ a, X) + (b, N* + b, N*) X

Vi= (4 2ffo)uagsin2nrY +ascos 2nXsin2ar Y +a, V) + (. N*+ 5 N* Y. (16)
Substituting cqns (14)-(16) into cqns (9) and using the boundary conditions (10) and (11),

pertaining to U, and ¥V, displacements, we obtain the following expressions for U; and V.

e A =% . - ‘X"
Us = 2(/4 +f*+fnj)(aq sin 2nX+a,sin2nXcos 2nr Y +a, X +a, 72)

3

+(b11\"’r+bziv:') (‘_}:}“ +f74.¥>+ (b:N:‘f‘bg(\"f}b(Y
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. . . . ) Y?
=20+ P+ fof) (a.:sm 2rrY+a,ycos2nXsin2nrY+a, Y +a, 7—7>

YJ
+(b,N*+b, N‘)b6Y+(b Nt+b N‘)(b7Y+ 77) {7

Using the solutions (16) and (17) in eqns (12) and (13) the following expressions for
in-plane forces can be obtained.

N = (f +2ffo)a; cos 2rnrY + N?
Ny = (f*+2ffo)ag cos 2aX+N}. N, =0 (18)

Ne=2(ff+/*+ fo/)a,scos 2nX +a,,cos 2nrY +a,; cos 2nX cos 2nrY
2 X’ - ] }’2
+a|g+a|qX +as() )+(b N*+b N*) h + +(b N +b N ) b9+Vﬂ7
N2 =2(ff+ 3+ fo)(a:, cos 2nX +ay; c0s 2nr Y +ay; cos 2nX cos 2nr Y +ay,
X: Y?
+a) Xi+ay,Y? )+(h N*+b, N"')( ..,+v,2 )+(b,N’+b N‘)<h|,+r1‘?4—>

Nor =20+ + fof)asssin 2nXsin 2nr Y. (19)

This completes the analysis for in-plane response in which the lateral displacement
(14) is the only unknown to be determined. In the next section we consider the inclusion of
transverse shear and rotary inertia cffects.

INCLUSION OF TRANSVERSE SHEAR AND ROTARY INERTIA EFFECTS
The two equilibrium equations governing the transverse shear response are written in

dimensionless form as

168 21 21 o .. 76°
A S TRY a'l|3¢+("’ ma)y =17 m'f‘ﬁ("’ 2n, )W +l7¢ —W'

. , 168 o e _2| W W ﬂl}f 75 .
T~ 1751 =+ (Vi) = |7'I’ + (V1 2n15) + - 2 Il

(20)

It is well-known that the shear rotations are one order higher than the in-plane displace-
ments. Thus, we select the following scries for two shear rotations ¢ and i :

¢ =0"0+0°:+0"ds+ 1 Y=Y, +8% 45T, + 1)

It may further be noted that any other choice, than series (21), would have been inconsistent
with eqns (20) as there are terms in which & appears in the denominator. Substituting the
serics (21) and (14) into eqns (20) we obtain the following set of equations in terms of ¢,s
and ys.

811301 = n*(1+rivy+2r2n,,) f cos nX sin nrY
8na = mPr(vy+rin,+2n,,) fsin nX cos nrY (22)
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168 .. e o
oG = G N d (v Y+ g’gf cosnYsinmrY

17

168 . . Lo T .

‘]“7"1:3'1’: SR AR TR AR GRS o PR T I gs‘f sinm.XcosnrY (23)
168 . .. AU B
‘ﬁ']l}d’; =G AN d T (v - Fd)l
168 .. . L
‘ﬁ’l:\‘f’t=’I:l//:+'11:l//:+(V:+'ll:)‘1’z—r,"l’l- (24)

Solving the above equations successively we obtain the following expressions for ¢;s
and ¥ s.

¢, =dygfcosnXsinnrY, Wy =u-fsinnXcosnrt
¢y = (asof +ay fcosnXsinarY: .= (u.f+afysinnXcosnrY
Gr=(ayaf +a feosnXsinnrY: W= (af+ay,f)sinnXcosnry. (25)

Again, we note that the only unknown to be determined in eqns (25) is the transverse
displacement which can be determined by analysing the lateral motion.

ANALYSIS OF OUT-OF-PLANE RESPONSE OF PLATE

The equation governing the lateral motion of the plate may be written in dimensionless
form as (Bhimaraddi, 1987b)

D D 2]

12 12 12 ,
5P s P27 HYTT) — 1571.-!P'"+ Wt

20 20 W e W = 12N+ ON W+ W)
FI2(NV, + N (T oW+ 240N (W W)
F 12N+ NGHIN W W)

F 12N+ N LN W +3H7)
N [2a i (53(”./” e ot ., 2
K524 + 15 + W)+ IS(rp +¥) (26)
where ¢ is the applied load in the lateral direction on the plate surface. All the quantities
in the above equation have already been expressed in terms of a single quantity f(1).
Substituting the same and applying the Galerkin’s method the following equation is
obtained.

(M 403Uy +6 %y +0"ag +0%ag)) f + (s +07ug +3%auy +0%ays) f
FR203 (N4 PNEY + (NP + NP a)] (S + 1o) +ass (S + 2 /1) (S + o)

+(33(1“(j7'+f2+/Hf(,)(f+j},)+(5('aso +‘5”‘15|)} =0. (2N

Some comments regarding the vartous terms in the above equation are in order. It
may be seen that a,y is the contribution due to the inclusion of rotary inertia of the flexural
rotations and a,, to ay, are the contributions duce to the inclusion of rotary inertia of the
shear rotations to the total inertia. The terms from a,. to a,s are the contributions due to
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the inclusion shear deformation to the stiffness term. The terms containing a4,. a4; and a o
are due to the inclusion of in-plane inertia. Also the terms containing as, and ag, artse due
to the inclusion of shear rotary inertia and they are neglected in the subsequent treatment
due to their smallness as compared to other terms.

[t is to be noted here that the inclusion of the effect of rotary inertia is to increase the
inertia and that of shear deformation is to decrease the stiffness of the system. as compared
to the one when they are neglected. Further, we note that the correction to the inertia term
due to the inclusion of rotary inertia of the shear rotations is very small as compared to
that of the flexural rotations and hence one can safely neglect the same. By using F = f+ f
eqn (27) can be written as

2 F+a (1 + N+, N—a, fi /2 ) F+a,F + 2 (F F+ FF?) = o, fo+Q (28)
and the a’s in the above equations are defined as

x, = | +(5:a33 +(54(l_w +(§6(140+(5H(1“ . XAy =Qaya +62U45 +(54a44 +(56(145
Ay = (52((14(,+;.(147)/l27t:(l+/..I'2); Ay = Uyy, As = (52{140
A=NIN¥. N=N!N. N =x/R2e°(1+ir"); Q= 192aq/Ks*n*.  (29)
Here we have assumed proportional in-planc loading in the x and y directions and N,
corresponds to the static bifurcation buckling load of biaxially compressed perfect plate.
Equation (28) is thc most general equation governing the nonlincar dynamic response of
an orthotropic plate subjected to in-plane and lateral loading, incorporating the cffects of
rotary inertia and shear deformation. This equation is exactly of the same form as that
derived by Pasic and Herrmann (1984) for isotropic plates. In this paper, among others,
we consider the farge amplitude oscillations, parametric excitations, and forced harmonic
oscillations of orthotropic plates. The following orthotropic material propertics are used in
the numerical examples:

E\E,=20; E\|G,=E/G,;=E/Gy;=40; v, =025
and the Poisson’s ratio in the case of an isotropic plate examples is taken as 0.3.

LARGE AMPLITUDE VIBRATIONS OF AN IN-PLANE LOADED PLATE

_ Under the absence of lateral loading (¢ = 0) and time independent in-plane loading
(N = 0) eqn (28) can be transformed as

F+ F+eF +(F*F+FF?) = p. (30)

Here superposed dots indicate differentiation with respect to (,1), and we have used the
following decfinitions.

QL=\/(12(|+N—°‘4f§/1:)/11)$ e=aJ(l+N—a,fifay)a,
y=as/a;; pu=fo/(l+N-a,f3/a,). €1))

using the method of multiple scales (Nayfeh and Mook, 1979) the solution of eqn (30) for
perfect plates (f, = 0) can be written as

F=Acos 0+c A" cos 30+0(°) (32)

where § = Qu, v+ f8; A and f are the constants to be determined from the initial conditions
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Table 1. Linear frequencies (£, ) of square isotropic plates (0 = 0.1, 4 = )

Classical theory Sheur deformation theory
1o NRI1 FRI NRI FRI SRI
N=0
0.0 19.739 19.579 19.210 19.054 19.060
0.1 19.807 19.646 19.27 19.123 19.128
0.2 20.007 19844 19.483 19.327 19.333
N = -04
0.0 15.557 15,431 14.880 14.759 14.764
0.1 15.642 15.515 14.969 14.848 14.852
0.2 15.895 15.766 15.233 15.109 15.114

NRL rotary inertias neglected ; FRIL flexural rotary inertia included ; SRI, both
flexural and shear rotary inertias included.

and Qy, 15 the nonlinear frequency which s dependent on the amplitude 4 in the foliowing
manner:

Qv = [1+3c—-27)478]Q,. (33)

It 1s clear from the above expression that the cffect of geometric nonlinearity is to
tncrease the frequency. whereas the effect of nonlinear inertia is to decrease the same. The
same conclusion has been made by Pasic and Herrmann (1984) in their study of rectangular
plates and by Bolotin (1964) in the study of beams. The constant ¢, appearing in eqn (32)
has the following definition

= (r=27)/32. (34)

it may be observed trom Table | and 2 that the shear deformation cffects on lincar
frequency become increasingly dominant with increasing in-plane load and the initial
imperfections. Even in the case of isotropic plate the difference between CPT and SDT s
about 5% (N = —0.4, f, = 0.2). As noted carlicr, the influence of shear rotary inertia on
the frequency is very small and can be neglected altogether. The material anisotropy requires
the use of shear deformation theory as there is a difference of more than 20% between the
results of the classical (CPT) and the shear deformation (SDT) theories.

Tables 3 and 4 depict the noalinear frequencies for in-plane loaded perfect square
plates. We note that the influence of in-plane inertia is insignificant even as the amplitude
of vibration increases. There is ubout 0.25% difference between the frequencies with in-
planc inertia and without in-plane inertia being considered. This difference does not seem
to depend much on the magnitudes of in-plane load.

Table 2. Lincar frequencies (€2,) of square orthotropic plites (0 = 0.1, 4 = 1)

Classical theory Shear deformation theory
Jo NRI FRI NRI FRI SR1
-\' = ()
0.0 10.697 10.610 9.015 8.942 8.953
0.1 10.832 10.744 9.176 9.101 9.112
0.2 11.22% 11137 9.640 9.562 9.573
N= —-04
0.0 9.051 8.977 6.983 6.927 6.935
0.1 9.210 9.135 7.189 7.130 7.139

0.2 9.673 9.594 7.773 7.710 7719
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Table 3. Nonlinear to linear frequency ratios (Qy,'Q, )t for in-planc loaded perfect square isotropic
plates (3 =0.1,i=1)

Without in-plane inertia With in-plane inertia
A4=193 A =35 A=1 A=135 4=35 A=1
N=0
CPT 1.033 1.075 1.159 1.032 1.073 .
SOT 1.005 1.050 1.135 1.003 1.047 1.132
N=-04

CPT 1.053 1.123 1.261 1.054 1.121 t.257
SDT 1.009 1.081 1.225 1.009 1.080 [.222

+ Linear frequency corresponds to the value of SDT.
CPT. classical plate theory: SDT. shear deformation theory

Table 4. Nonlinear to linear frequency ratios (Qy, /Q, ) for in-plane loaded perfect square orthotropic
plates (0 =0.1. 4 = 1)

Without in-plane inertia With in-plane inertia
A=15 A =135 A=1 A=1S 4=13/5 A=1
N=0
CPT 1.208 1.389 1.751 1.208 1.394 1.764
SDT 1.027 1.246 1.672 1.027 1.246 1.683
N=-04
Ccrr £.329 1.605 2188 1.330 1.611 2172
SDT [.045 1,403 2,120 1.045 1.407 2.131

Table §. Steady-state amplitude values of parametrically excited square
orthotropic perfect plate (£ = —0.2; 4 = 1; SDT results)

o =01 8 =0.05 &4 =0.025 4 =001
0.394611 0.44063 0.45323 045697
0.38575¢ 043730 0.45231 0.45682

t Including in-plane inertia.
$Neglecting in-planc nertia.

PRINCIPAL PARAMETRIC OSCILLATIONS
In this section we consider the case of the subharmonic resoniance of order two for
pertect plates (f, = 0). In this case eqn (28), under the absence of lateral load (¢ = 0) and
under the presence of time dependent inpliine load (N = P cos 2t'), can be written as

F+(1+A cos 20)F+eF? +3(F F+ FF?) = 0. (35)

Here the superposed dots indicate the differentiation with respect to 1, and we have used
the following definitions for coefficients appearing in the above equation.

U= J(x/01): A= Pla—dua)/a, 6= a1, = as/a. (36)

Again using the method of multiple scales and restricting ourselves to the first approxi-
mation, the solution of eqn (35) can be written as

F=Acos t"+0(s). 37
Here A is the steady-state amplitude which is given by the following relation
A= +/(—44/(3c~27)). (38)

Table 5 shows steady-state amplitude [eqn (38)] values for orthotropic square plate
with various thickness to length ratios. It is clearly observable that the effects of in-plane
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Eqn (£2)

‘(Eqn ({3)

Fig. 2. Nonhlinear response curve.

inertia are predominant in thick plates und their effects become less predominant as the
thickness of the plate decreases. For 10% thick plate the difference in the amplitudes is
about 2.3% between the results when the in-plane inertia is considered and is not considered.
Whereas, for 1% thick plate this difference is only 0.04%.

FORCED RESPONSE OF PLATES SUBJECTED TO HARMONIC LATERAL PRESSURE

In this section we consider the nonlinear response of plates subjected to harmonically
varying lateral pressure (¢ = pcos wt’) on the surface. Equation (28) for perfect plates,
under the absence of in-plane loads, can be written as

Fabl+el ' +y(FFHFFYY =k cos ot (39)

Here superposed dots indicate differentiation with respect to t and e is the frequency of
the applicd pressure. We have used the following definitions.

’

U= Jn/a ) k= 192pafKrtotas = ag/aa p o= 2. (30)
The solution of egn (39) to first approximation cun be written as
F = cos wr (41)

where A is the steady-state amplitude. The relation between A and the applied load par-
ameters (k, w) can be obtained using the method of multiple scales as

w=A3e=27) 8-k 24+ | (42)

The typical plot of eqn (42) is shown in Fig. 2. Note that point “07 in Fig. 2 corresponds

to the point where the motion becomes unstable or the “jump™ phenomenon occurs. Also

at this point we have dw/dA = 0. Utilising this fuct and eqn (42) we obtain the following
relation.

w =34 (3c=27)/8. (43)

The plot of this equation is also shown in Fig. 2. Thus the critical amplitude (A.) and

critical forcing frequency (w,), which are the coordinates of the point 0™, can be obtained
using cqns (42) and (43) as

2% ) 27k* o
A [(3;:-2;»} L +[ i2g )} =

Some numerical results depicting the values of the critical frequency are shown in
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Table 6. Critical forcing frequency (w,) values of orthotropic square plate (SDT

results)
k d=0.1 4 =005
{ 2.0428¢% 2.0487¢ 1.9591¢ 1.9609:
2 2.6554 2.6647 2.5225 2.5254
3 3.1692 3.1814 2.9951 2.9988

t Neglecting in-plane inertia.
1 Including in-plane inertia.

Table 6 for different values of plate thickness and magnitude of the applied load. It is
evident from this table that the effects of in-plane inertia is insignificant even in the case of
10% thick plate.

NONLINEAR VIBRATIONS OF PRELOADED (IN-PLANE) PLATES

Here we consider the second kind of in-plane loaded plate vibration problem and study
the influence of in-plane inertia on the vibration characteristics of the preloaded plate about
its static deflected position. The governing equation corresponding to the static response,
under the absence of laterally applied load (¢ = 0) and after ignoring the time derivatives,
can be written from eqn (28) as

(1 + N=alfyla)F+a,F} =a,f,. (45)

Here F, represents (refer to Fig. 3) the deflection of the in-plane loaded imperfect plate. If
the plate is imperfection sensitive then the limit load ¥, < 1. Now we superimpose the large
amplitude vibrations (f}). in the form of the deflected shape, over the static deflected
position. Substituting f,+ F, in place of Fin egn (28) and noting that the time derivatives
of F, vanish, we obtain the following equation.

Jir @i furafivefI+B(SI+2L /) +v (LIt fifD =0 (46)

where w, represents linear frequency of the in-plane preloaded plate and the following
definitions have been used.

3 _az(|+N)—a4f5+3a4F}_ « = 3o, F,

‘ asFl+a, ’ T agFl
[+ Y aSFJ aS
€= 3 s = 3 y T = 3 . 47
oasF;+a, asF; +a, / asF; +a, @47

Itis evident from the presence of a5 term in the frequency expression that the frequency
of the preloaded plate is also effected by in-plane inertia. However, in this case when the
plate is vibrating about its static deflected position the in-plane inertia increases the fre-
quency value unlike the case of a plate vibrating about its initial unloaded position where
the effect of in-plane inertia is to decrease the same. [t can easily be shown that the frequency

fo

wn

L]
Fig. 3. Deflected positions of in-plane loaded plate.
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Fig. 4. Vaniation of frequency of an orthotropic plate with in-plane preloading.

of a preloaded plate vanishes at the limit load. At limit load we have dN/dF, = 0. Using
this fact and eqn (45) onc can obtain the following equation:

20,F = F 42,1+ £,) = 0. (48)

Substituting F, in place of F, onc obtains an expression for NV, from eqn (45) in terms of
F,. Then substituting this expression for NV, and also £ in place of Fin the expression for
frequency, i.c. first of the eqns (47), once can see that the frequency expression reduces to
that of eqn (48). The solution of eqn (46) can be obtained by the method of multiple scales
which yiclds the expression for nonlinear frequency as

3 Sa* 7 . 1 .
W, = |+[ > ":lA‘;. (49)

G
8w Do} 4

In the above, A, represents the amplitude of vibration of the preloaded plate about its static
deflected position. Figure 4 depicts comparison of frequencies (w,) of a preloaded plate
considering and not considering the in-plane inertia effects, It may be observed that the
influence of in-plane inertia is very small and can be ignored even in the present case of
10% thick plate.

CONCLUSIONS

In conclusion we note that the regular perturbation technique to the nonlinear plate
vibration analysis has been used to study the effects of shear deformation, rotary inertia,
and the in-plane inertia. From the numerical results obtained for different plate vibration
problems it is shown that the effects of in-plane inertia are to be considered while analysing
the nonlinear response of parametrically excited plates and they can be safely neglected
while analysing other types of plate vibration problems.
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